70 research outputs found

    Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects

    Full text link
    We introduce a method based on the deflectometry principle for the reconstruction of specular objects exhibiting significant size and geometric complexity. A key feature of our approach is the deployment of an Automatic Virtual Environment (CAVE) as pattern generator. To unfold the full power of this extraordinary experimental setup, an optical encoding scheme is developed which accounts for the distinctive topology of the CAVE. Furthermore, we devise an algorithm for detecting the object of interest in raw deflectometric images. The segmented foreground is used for single-view reconstruction, the background for estimation of the camera pose, necessary for calibrating the sensor system. Experiments suggest a significant gain of coverage in single measurements compared to previous methods. To facilitate research on specular surface reconstruction, we will make our data set publicly available

    Analysis and Synthesis of Digital Dyadic Sequences

    Full text link
    We explore the space of matrix-generated (0, m, 2)-nets and (0, 2)-sequences in base 2, also known as digital dyadic nets and sequences. In computer graphics, they are arguably leading the competition for use in rendering. We provide a complete characterization of the design space and count the possible number of constructions with and without considering possible reorderings of the point set. Based on this analysis, we then show that every digital dyadic net can be reordered into a sequence, together with a corresponding algorithm. Finally, we present a novel family of self-similar digital dyadic sequences, to be named Îľ\xi-sequences, that spans a subspace with fewer degrees of freedom. Those Îľ\xi-sequences are extremely efficient to sample and compute, and we demonstrate their advantages over the classic Sobol (0, 2)-sequence.Comment: 17 pages, 11 figures. Minor improvement of exposition; references to earlier proofs of Theorems 3.1 and 3.3 adde

    Hardy inequalities for Robin Laplacians

    Get PDF
    In this paper we establish a Hardy inequality for Laplace operators with Robin boundary conditions. For convex domains, in particular, we show explicitly how the corresponding Hardy weight depends on the coefficient of the Robin boundary conditions. We also study several extensions to non-convex and unbounded domains

    Residency Octree: A Hybrid Approach for Scalable Web-Based Multi-Volume Rendering

    Full text link
    We present a hybrid multi-volume rendering approach based on a novel Residency Octree that combines the advantages of out-of-core volume rendering using page tables with those of standard octrees. Octree approaches work by performing hierarchical tree traversal. However, in octree volume rendering, tree traversal and the selection of data resolution are intrinsically coupled. This makes fine-grained empty-space skipping costly. Page tables, on the other hand, allow access to any cached brick from any resolution. However, they do not offer a clear and efficient strategy for substituting missing high-resolution data with lower-resolution data. We enable flexible mixed-resolution out-of-core multi-volume rendering by decoupling the cache residency of multi-resolution data from a resolution-independent spatial subdivision determined by the tree. Instead of one-to-one node-to-brick correspondences, each residency octree node is mapped to a set of bricks from different resolution levels. This makes it possible to efficiently and adaptively choose and mix resolutions, adapt sampling rates, and compensate for cache misses. At the same time, residency octrees support fine-grained empty-space skipping, independent of the data subdivision used for caching. Finally, to facilitate collaboration and outreach, and to eliminate local data storage, our implementation is a web-based, pure client-side renderer using WebGPU and WebAssembly. Our method is faster than prior approaches and efficient for many data channels with a flexible and adaptive choice of data resolution.Comment: VIS 2023 - full pape

    A Survey of GPU-Based Large-Scale Volume Visualization

    Get PDF
    This survey gives an overview of the current state of the art in GPU techniques for interactive large-scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga-, tera-, and petabytes of volume data can be enabled on GPUs. In addition to combining the parallel processing power of GPUs with out-of-core methods and data streaming, a major enabler for interactivity is making both the computational and the visualization effort proportional to the amount and resolution of data that is actually visible on screen, i.e., “output-sensitive” algorithms and system designs. This leads to recent outputsensitive approaches that are “ray-guided,” “visualization-driven,” or “display-aware.” In this survey, we focus on these characteristics and propose a new categorization of GPU-based large-scale volume visualization techniques based on the notions of actual output-resolution visibility and the current working set of volume bricks—the current subset of data that is minimally required to produce an output image of the desired display resolution. For our purposes here, we view parallel (distributed) visualization using clusters as an orthogonal set of techniques that we do not discuss in detail but that can be used in conjunction with what we discuss in this survey.Engineering and Applied Science

    A Process for Digitizing and Simulating Biologically Realistic Oligocellular Networks Demonstrated for the Neuro-Glio-Vascular Ensemble

    Get PDF
    One will not understand the brain without an integrated exploration of structure and function, these attributes being two sides of the same coin: together they form the currency of biological computation. Accordingly, biologically realistic models require the re-creation of the architecture of the cellular components in which biochemical reactions are contained. We describe here a process of reconstructing a functional oligocellular assembly that is responsible for energy supply management in the brain and creating a computational model of the associated biochemical and biophysical processes. The reactions that underwrite thought are both constrained by and take advantage of brain morphologies pertaining to neurons, astrocytes and the blood vessels that deliver oxygen, glucose and other nutrients. Each component of this neuro-glio-vasculature ensemble (NGV) carries-out delegated tasks, as the dynamics of this system provide for each cell-type its own energy requirements while including mechanisms that allow cooperative energy transfers. Our process for recreating the ultrastructure of cellular components and modeling the reactions that describe energy flow uses an amalgam of state-of the-art techniques, including digital reconstructions of electron micrographs, advanced data analysis tools, computational simulations and in silico visualization software. While we demonstrate this process with the NGV, it is equally well adapted to any cellular system for integrating multimodal cellular data in a coherent framework

    Towards an end-to-end analysis and prediction system for weather, climate, and marine applications in the Red Sea

    Get PDF
    Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(1), (2021): E99-E122, https://doi.org/10.1175/BAMS-D-19-0005.1.The Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.The development of the Red Sea modeling system is being supported by the Virtual Red Sea Initiative and the Competitive Research Grants (CRG) program from the Office of Sponsored Research at KAUST, Saudi Aramco Company through the Saudi ARAMCO Marine Environmental Center at KAUST, and by funds from KAEC, NEOM, and RSP through Beacon Development Company at KAUST
    • …
    corecore